
Run a DFIR investigation
the easy way:

Revealer Toolkit 2
Abraham Pasamar

Juan Vera

Something about the speakers

Abraham Pasamar Juan Vera

Something about our company

- 15 years of experience in cybersecurity
- Incident Response
- Forensic Lab
- Red Teams

Lessons learned during these years:

- All cases are different…
- and yet, all cases have similar procedures
- Automated procedures are key to success
- To handle multiple cases and multiple analysts

we need to enforce work organization

DFIR Analysis tools

DFIR analysis tools

- Commercial solutions: EnCase, FTK, OSForensics.
- Nirsoft
- Autopsy
- Kuiper
- ...

Encase

Commercial solutions

FTK

X-WAYS

OTHERS

NirSoft

Autopsy

Kuiper

DFIR Open Source Tools

● Sleuthkit

● Tika

● ElasticSearch

● Kibana

● Regripper

● Radare2

● Yara

● Hindsight

● Apollo Project

● Srum-dump

● Spotlight_parser

● Volatility

A typical investigation using OS tools

The Revealer Toolkit 2

● Give back to the world!
● Give control about the output to the analyst
● Open source
● Chains of modules
● Automate repetitive tasks
● Prevent human errors
● Run common tasks for all cases

The RVT2 is…

● A set of predefined chains of commands to run on forensic
images

● A converter between “anything” to JSON
● An interface to many OS tools: PSTParser, RegRipper, ag,

SQLite, ElasticSearch…
● A way to structure the output from the tools
● A logger for the already run commands

Overview

IF THE TOOL DOES THE HARD WORK, THE
ANALYST HAS LONGER TIME TO THINK ABOUT

THE CASE

● Text output: chainable with other commands
● Automation of routine tasks: let the analyst think
● Organized and reproducible output: the case can be

easily transferred to other analysts
● Python: extensible
● All actions are registered: reports, monitoring,

statistics...
● Tested for years and hundreds of cases
● Joint work of dozens of developers

Strong points

History and developers
● Manel Ginés, alias xkulio, started the project in Bash/Perl as Chanchullos-revealer.
● Luís Gómez, alias Pope
● Jose Navarro, first commit in Google Code in 2008
● Sara Rincón
● Jose Selvi
● Abraham Pasamar
● Manel Cardona, first version in Python.
● Carlos Férnandez
● Imanol Barba
● Eduard Sanou
● Arnau Estevanell
● Neus Boix
● Pau García

Modules and Jobs

Handling multiple sources

Structure

Modules

A module is a class that extends base.job.BaseModule. A module does
something very specific, such as reading a CSV, writing a JSON file or parsing an
EVTX file suing an external tool. A module takes a path as an input, reads its
configuration and yields a dictionary. That is to say: a module returns a generator
of dictionaries.

Jobs

A single job is a chain of modules connected one after the other to perform a
complex task. For example, read the contents of a CSV file, filter out the lines not
containing a regex, save the results to a JSON file, convert the JSON file to be ready
to be sent to ElasticSearch... A chain can have any number of modules, or even just
one since a module can run as a single job. The modules in a single job are chained
together, and share information to each other.

Job example: preforensics
[windows.preforensics]
help_section: windows
jobs:

mount
allocfiles vss={vss}
fs_timeline vss={vss}
windows.autorip vss={vss}
windows.characterize
windows.hives vss={vss}
windows.recentfiles vss={vss}
windows.evtx_export vss={vss}
windows.evtx vss={vss}
windows.events
windows.exec vss={vss}
windows.activity_cache vss={vss}
windows.usb vss={vss}
windows.recycle vss={vss}
windows.usnjrnl vss={vss}
; windows.bits vss={vss}
browsers vss={vss}
windows.srum vss={vss}

● mount: Mount all partitions of a disk image.
● umount: Unmount all partitions of a disk image
● fs_timeline: Generate a timeline of a filesystem according to MFT.
● allocfiles: Generate allocated files in a disk image
● characterize: Describes basic information about disk and partitions.
● strings: Extract all strings of printable characters (ascii and unicode)

from disk data.
● search_strings: Search defined keywords in disk strings. The list of

keywords must be defined in a separated file, including the keyword
name and a regex if desired.

● search_email: Search emails patterns in strings
● search_accounts: Search account patterns in strings
● search_output: Search regular expressions in a source output

directories, except for strings, searches and parser folders.
● browsers: Extract information about most common internet browsers

(chrome, firefox, safari, edge).
● skype: Extract contacts, messages, calls from Skype databases

Common

● windows.preforensics: Main set of forensic analysis jobs to run on a
Windows disk partition

● windows.characterize: Describes basic information about disk and
Windows partitions.

● windows.recentfiles: Parse lnk and jumplist files from a Windows
image. Generates a summary file with all recent files sources.

● windows.events: Parse Windows event files to get relevant logs events.
● windows.exec: Extract and parse Windows artifacts related with

applications execution (Prefetch, RFC, BAM).
● windows.autorip: Extracts an extensive set of keys from Windows

Registry hives. Results are organized according to its information type.
● windows.recycle: Parse files in (or deleted from) Windows Recycle Bin
● windows.srum: Extract and parse SRUM (System Resource Utilization

Monitor) from a windows OS
● windows.usnjrnl: Parse NTFS UsnJrnl
● windows.hiberfil: Decompress hiberfil.sys and extract some artifacts
● windows.bits: Parse Background Intelligent Transfer Service (BITS)
● windows.activity_cache: Parse ActivitiesCache database
● windows.i30: Parse I30 files to obtain a timeline

Windows

● ios.preforensics: Run a selected set of jobs in this
module: unback, characterize, databases, cookies,
whatsapp

● ios.apollo: Parse iOS databases from the APOLLO project
(https://github.com/mac4n6/APOLLO).

● ios.databases: Parse iOS databases not in the APOLLO
project

● ios.timeline: Parse manifest file and generate a body and
a timeline csv using mactime

● ios.cookies: Parse cookies in
/HomeDomain/Library/Cookies

● ios.whatsapp: Parse WhatsApp database
● ios.avere_whatsapp: Avere WhastApp messages in IOS

ios

https://github.com/mac4n6/APOLLO

● indexer.directory: Parse a directory.
● indexer.save: Save a previously indexed database in

an ElasticSearch server. Alternative to `elasticdump`.
● indexer.index_timeline_body: Index a BODY file

provided in the path.
● indexer.mails: Export, parse and characterize

contents of every pst or ost file found in a source
● indexer.blind_searches: Blind searches on a parsed

JSON file, result from indexer.save.
● indexer.query_and_tag: Query elastic, select all

related documents (containers, attachments..) and tag
all of them. You must indexer.save the output

● indexer.export: Query elastic, select all documents
matching a query and export them to a JSON.

● indexer.mails: Export, parse and characterize
contents of every pst or ost file found in a source

Indexer

RVT2 Ecosystem

Rvt2 process

Rvt2: Console interface
rvt2 --morgue morgue --casename 112233-test -j status

rvt2 --morgue morgue --casename 112233-test --source 1-indexer -j
indexer.directory -p

Rvt2-analyzer: web interface

Rvt2-analyzer: Kibana dashboards

Example:
Digital Corpora - Owl

2018 OWL (Digital Corpora)
In a jurisdiction where Owls are illegal to trade and buy, two users
are discussing the illegal trade of owls. The computer and mobile
device taken into evidence are of a user who is attempting to
purchase owls illegally. The user has contacted another user who
can provide an owl in exchange for cash. An owl is decided upon,
and an exchange is scheduled.

https://digitalcorpora.org/corpora/scenarios/2018-owl

Sources:

- PC Windows
- Nexus Android

https://digitalcorpora.org/corpora/scenarios/2018-owl

These questions are based on "the five W":

Incident simulation - Questions solution

WHAT? WHEN? WHERE? WHO? WHY?

and bonus...HOW?

Source
Characterization

$ sudo rvt2 --source
100100-07-1 -j mount

$ rvt2 --source 100100-07-1 -j
windows.characterize

$ rvt2 --source 100100-07-1 -j allocfiles

File Analysis

Filesystem Timeline
$ rvt2 --source 100100-07-1 -j fs_timeline
$ rvt2 --source 100100-07-1 -j events.timeline

RVT Analyzer. Owl key search
$ rvt2 --source 100100-07-1 -j indexer.save_directory

https://docs.google.com/file/d/15pRoYwCzZyXJl_Uiu--dZ7qxagbJljau/preview

AI Image
Classification

$ rvt2 --source 100100-07-2
-j ai.classify

https://docs.google.com/file/d/1aoi5ZRmsZV5cw0BDMKI5USQ3FQxiyWwh/preview

https://docs.google.com/file/d/1ARVc7GChChPcDK_wE0PqDyWA9w2q5jXk/preview

User Folder files distribution

Events associated to ‘Snowy Owl Care.pdf’
$ rvt2 --source 100100-07-1 -j events.save

Events Count by Artifact and action (filtered by Owl)

Browsers History by url

Browsers Downloads
rvt2 --source 100100-07-1 -j browsers

Recent opened files
$ rvt2 --source 100100-07-1 -j windows.recentfiles

Strings Search $ rvt2 --source 100100-07-2 -j strings
$ rvt2 --source 100100-07-2 -j search_strings

$ rvt2 --source 100100-07-2 -j android.databases

Evidences:

Android Device Analysis

Maps and Navigation

● Numerous documents related to owls have been identified in the analyzed devices.
● Traces of Internet searches related to owl purchasing have been found on both the analyzed

computer and the mobile phone.
● Traces of emails with owl purchasing topic have been found on the computer
● On January 30, 2017, the purchase of an owl is agreed by Sarah McAvoy, the main user of

the application musically on the Android device analyzed and matching on behalf of the user
of the Windows PC. The animal belongs to the user layster82, named Layla and email
Layster82gmail.

● The purchase price is agreed at a value of 5000 and a face-to-face meeting is set at the
Harris river front park location.

● The meeting point mentioned in the sales conversation, located in Huntington, was searched
in the Google Maps application, as well as instructions on how to get there.

● An SMS message is identified from the telephone number +13045184333 in which the time of
delivery is set at 7 PM.

● The email Layster82@gmail.com is identified among the contacts of the investigated device,
and can be associated with the name Layla Aster.

● Just after these events, Sarah McAvoy googles how to feed an owl.

Conclusions

Installation

Installation and repos
git clone https://github.com/IncideDigital/rvt2-docker.git
cd rvt2-docker
./rvt2

Documentation: https://github.com/IncideDigital/rvt2-docs

Source code: https://github.com/IncideDigital/rvt2

Docker: https://github.com/IncideDigital/rvt2-docker

https://github.com/IncideDigital/rvt2-docs
https://github.com/IncideDigital/rvt2
https://github.com/IncideDigital/rvt2-docker

Next steps
New modules!

New artifacts!

New GUIs!

Better Incident Response!

Better documentation!

Your collaboration!

Thanks!

Run a DFIR investigation the easy way:
Revealer Toolkit 2

Abraham Pasamar
Juan Vera

